Modelling the Evolution of Microstructure in Steel Weld Metal
نویسنده
چکیده
Physical models for the development of microstructure have the potential of revealing new phenomena and properties. They can also help identify the controlling variables. The ability to model weld metal microstructure relies on a deep understanding of the phase transformation theory governing the changes which occur as the weld solidifies and cools to ambient temperature. Considerable progress has been made with the help of thermodynamic and kinetic theory which accounts for the variety of alloying additions, non–equilibrium cooling conditions and other many other variables necessary to fully specify the welded component. These aspects are reviewed with the aim of presenting a reasonably detailed account of the methods involved, and of some important, outstanding difficulties. It is now well established that extremely small concentrations of certain elements can significantly influence the transformation behaviour of weld metals. Some of these elements are identical to those used in the manufacture of wrought microalloyed steels, whereas others enter the fusion zone as an unavoidable consequence of the welding process. The theory available to cope with such effects is as yet inadequate. Methods for incorporating the influence of trace elements such as oxygen, aluminium, boron, nitrogen, titanium and the rare earth elements into schemes for the prediction of microstructure are discussed. The very high sensitivity of modern microalloyed steels to carbon concentration is also assessed. Some basic ideas on how the approximate relationships between weld microstructure and mechanical properties can be included in computer models are discussed.
منابع مشابه
Microstructure and mechanical properties of similar and dissimilar welding joints of weathering steel and plain carbon steel by GMAW with CO2 shielding gas
The welding joints were investigated due to the significance of similar welding of Corten A weathering steel and its dissimilar welding with St12 plain carbon steel in industrial applications. The gas metal arc welding (GMAW) technique with carbon dioxide shielding gas was utilized in the present work. The welding process comprised current and voltage control, welding wire injection rate, shiel...
متن کاملMicrostructure and mechanical properties of similar and dissimilar welding joints of weathering steel and plain carbon steel by GMAW with CO2 shielding gas
The welding joints were investigated due to the significance of similar welding of Corten A weathering steel and its dissimilar welding with St12 plain carbon steel in industrial applications. The gas metal arc welding (GMAW) technique with carbon dioxide shielding gas was utilized in the present work. The welding process comprised current and voltage control, welding wire injection rate, shiel...
متن کاملEvaluation of the Melted Zone Microstructure in the Interface of the Dissimilar Weld between A335 Low Alloy Steel and ER309L Filler Metal by Gas Tungsten Arc Welding
In the present study, the microstructure and mechanical properties of the dissimilar welding between ASTM A335 low alloy steel and ER309L austenitic stainless steel were investigated using the gas tungsten arc welding process. The welding of dissimilar materials between ASTM A335 low alloy steel and ER309L austenitic stainless steel was found to have a significant effect on the microstructure w...
متن کاملEvolution of Microstructure and Mechanical Properties of Gas Tungsten Arc Welding of Super Duplex Stainless Steel UNSS32750
In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properti...
متن کاملEvolution of Microstructure and Mechanical Properties of Gas Tungsten Arc Welding of Super Duplex Stainless Steel UNSS32750
In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properti...
متن کاملEffect of Weld Metal Microstructure on the Fatigue and Corrosion-Fatigue Properties of GTA-Welded 304 Stainless Steel
In this research, two different filler metals, ERNiCrMo-3 and ER309L, were used for developing different microstructure, austenite (γ) and austenite and ferrite (γ+δ) in the weld metal and fatigue properties of welded samples were evaluated in the air and sea water environments. Microstructural studies indicated a good agreement between predicted microstructures via schiffler diagram and metall...
متن کامل